Mrc1 protects uncapped budding yeast telomeres from exonuclease EXO1

نویسندگان

  • Avgi Tsolou
  • David Lydall
چکیده

Mrc1 (Mediator of Replication Checkpoint 1) is a component of the DNA replication fork machinery and is necessary for checkpoint activation after replication stress. In this study, we addressed the role of Mrc1 at uncapped telomeres. Our experiments show that Mrc1 contributes to the vitality of both cdc13-1 and yku70Delta telomere capping mutants. Cells with telomere capping defects containing MRC1 or mrc1(AQ), a checkpoint defective allele, exhibit similar growth, suggesting growth defects of cdc13-1 mrc1Delta are not due to checkpoint defects. This is in accordance with Mrc1-independent Rad53 activation after telomere uncapping. Poor growth of cdc13-1 mutants in the absence of Mrc1 is a result of enhanced single stranded DNA accumulation at uncapped telomeres. Consistent with this, deletion of EXO1, encoding a nuclease that contributes to single stranded DNA accumulation after telomere uncapping, improves growth of cdc13-1 mrc1Delta strains and decreases ssDNA production. Our observations show that Mrc1, a core component of the replication fork, plays an important role in telomere capping, protecting from nucleases and checkpoint pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping

Essential telomere 'capping' proteins act as a safeguard against ageing and cancer by inhibiting the DNA damage response (DDR) and regulating telomerase recruitment, thus distinguishing telomeres from double-strand breaks (DSBs). Uncapped telomeres and unrepaired DSBs can both stimulate a potent DDR, leading to cell cycle arrest and cell death. Using the cdc13-1 mutation to conditionally 'uncap...

متن کامل

EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae.

Previous work in budding yeast has indicated that telomeres are protected, at least in part, from the action of Exo1, which degrades the C-rich strand of partially uncapped telomeres. To explore this further, we examined the consequences of Exo1-mediated activity in strains that lacked Ku, telomerase, or both. Loss of Exo1 partially rescued the telomere length defect in a yku80delta strain, dem...

متن کامل

Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response

Exo1 is a nuclease involved in mismatch repair, DSB repair, stalled replication fork processing and in the DNA damage response triggered by dysfunctional telomeres. In budding yeast and mice, Exo1 creates single-stranded DNA (ssDNA) at uncapped telomeres. This ssDNA accumulation activates the checkpoint response resulting in cell cycle arrest. Here, we demonstrate that Exo1 is phosphorylated wh...

متن کامل

Fission Yeast Exo1 and Rqh1-Dna2 Redundantly Contribute to Resection of Uncapped Telomeres

The uncapping of telomeres induces a DNA damage response. In Schizosaccharomyces pombe, deletion of pot1+ causes telomere uncapping and rapid telomere resection, resulting in chromosome fusion. Using the nmt-pot1-aid strain, we previously reported that Pot1 shut-off causes telomere loss and chromosome fusion in S. pombe. However, the factors responsible for the resection of uncapped telomeres r...

متن کامل

Survival and Growth of Yeast without Telomere Capping by Cdc13 in the Absence of Sgs1, Exo1, and Rad9

Maintenance of telomere capping is absolutely essential to the survival of eukaryotic cells. Telomere capping proteins, such as Cdc13 and POT1, are essential for the viability of budding yeast and mammalian cells, respectively. Here we identify, for the first time, three genetic modifications that allow budding yeast cells to survive without telomere capping by Cdc13. We found that simultaneous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2007